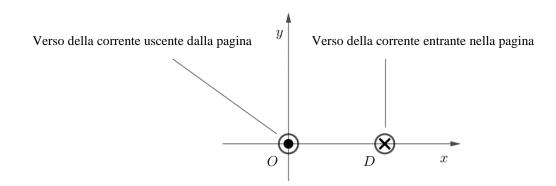
Ministero dell'Istruzione, dell'Università e della Ricerca

ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE

Indirizzi: LI02, EA02 – SCIENTIFICO LI03 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE LI15 - SCIENTIFICO - SEZIONE AD INDIRIZZO SPORTIVO


(Testo valevole anche per le corrispondenti sperimentazioni internazionali e quadriennali)

Tema di: MATEMATICA e FISICA

Il candidato risolva uno dei due problemi e risponda a 4 quesiti.

PROBLEMA 1

Due fili rettilinei paralleli vincolati a rimanere nella loro posizione, distanti 1 m l'uno dall'altro e di lunghezza indefinita, sono percorsi da correnti costanti di pari intensità ma verso opposto; si indichi con i l'intensità di corrente, espressa in ampere (A). Si consideri un piano perpendicolare ai due fili sul quale è fissato un sistema di riferimento ortogonale Oxy, dove le lunghezze sono espresse in metri (m), in modo che i due fili passino uno per l'origine O e l'altro per il punto D(1,0), come mostrato in figura.

- 1. Verificare che l'intensità del campo magnetico \vec{B} , espresso in tesla (T), in un punto P(x,0), con 0 < x < 1, è data dalla funzione $B(x) = K\left(\frac{1}{x} + \frac{1}{1-x}\right)$, dove K è una costante positiva della quale si richiede l'unità di misura. Stabilire quali sono la direzione e il verso del vettore \vec{B} al variare di x nell'intervallo (0,1). Per quale valore di x l'intensità di \vec{B} è minima?
- 2. Nella zona di spazio sede del campo \vec{B} , una carica puntiforme q transita, ad un certo istante, per il punto $C\left(\frac{1}{2},0\right)$, con velocità di modulo v_0 nella direzione della retta di equazione $x=\frac{1}{2}$. Descriverne il moto in presenza del solo campo magnetico generato dalle due correnti, giustificando le conclusioni.
 - Stabilire intensità, direzione e verso del campo magnetico \vec{B} nei punti dell'asse x esterni al segmento OD. Esistono punti sull'asse x dove il campo magnetico \vec{B} è nullo?
- 3. Indipendentemente da ogni riferimento alla fisica, studiare la funzione $f(x) = K\left(\frac{1}{x} + \frac{1}{1-x}\right)$ dimostrando, in particolare, che il grafico di tale funzione non possiede punti di flesso. Scrivere l'equazione della retta r tangente al grafico di f nel suo punto di ascissa $\frac{1}{3}$ e determinare le coordinate dell'ulteriore punto d'intersezione tra r e il grafico di f.

Ministero dell'Istruzione, dell'Università e della Ricerca

4. Calcolare il valore dell'integrale

$$\int_{1/4}^{3/4} f(x) \, dx$$

ed interpretare geometricamente il risultato ottenuto. Esprimere, per $t \ge 2$, l'integrale

$$g(t) = \int_{2}^{t} |f(x)| \, dx$$

e calcolare $\lim_{t\to +\infty} g(t)$. Qual è il significato di tale limite?

PROBLEMA 2

Assegnato un numero reale positivo k, considerare le funzioni f e g così definite:

$$f(x) = \sqrt{x} (k - x)$$

$$g(x) = x^2(x - k).$$

- 1. Provare che, qualunque sia k > 0, nell'intervallo [0, k] il grafico di f ha un unico punto di massimo $F(x_F, y_F)$ ed il grafico di g ha un unico punto di minimo $G(x_G, y_G)$. Verificare che si ha $x_G = 2x_F$ e $y_G = -(y_F)^2$.
- 2. Verificare che, qualunque sia k > 0, i grafici delle due funzioni sono ortogonali nell'origine, vale a dire che le rispettive rette tangenti in tale punto sono tra loro ortogonali. Determinare per quale valore positivo di k i due grafici si intersecano ortogonalmente anche nel loro ulteriore punto comune.

D'ora in avanti, assumere k = 1. In un riferimento cartesiano, dove le lunghezze sono espresse in metri (m), l'unione degli archi di curva di equazioni y = f(x) e y = g(x), per $x \in [0, 1]$, rappresenta il profilo di una spira metallica. Sia S la regione piana delimitata da tale spira.

- 3. Supponendo che nella regione S sia presente un campo magnetico uniforme, perpendicolare al piano di S, avente intensità $B_0 = 2.0 \cdot 10^{-2}$ T, verificare che il valore assoluto del flusso di tale campo attraverso S è pari a $7.0 \cdot 10^{-3}$ Wb.
- 4. Supporre che la spira abbia resistenza elettrica R pari a 70 Ω e che il campo magnetico, rimanendo perpendicolare al piano di S, a partire dall'istante $t_0 = 0$ s, inizi a variare secondo la legge:

$$B(t) = B_0 e^{-\omega t} \cos(\omega t)$$
, con $\omega = \pi \text{ rad/s}$

e $t \ge 0$ espresso in secondi (s). Esprimere l'intensità della corrente indotta nella spira in funzione di t, specificando in quale istante per la prima volta la corrente cambia verso.

Qual è il valore massimo di tale corrente per $t \ge 0$? Spiegare quale relazione esiste tra la variazione del campo che induce la corrente e il verso della corrente indotta.

Ministero dell'Istruzione, dell'Università e della Ricerca

- QUESITI
 - 1. Assegnato $k \in \mathbb{R}$, si consideri la funzione così definita: $g(x) = \frac{(k-1)x^3 + kx^2 3}{x-1}$.
 - Come va scelto il valore di *k* affinché il grafico di *g* non abbia asintoti?
 - Come va scelto il valore di *k* affinché il grafico di *g* abbia un asintoto obliquo?

Giustificare le risposte e rappresentare, nei due casi, i grafici delle funzioni ottenute.

- 2. Sia f una funzione pari e derivabile in \mathbb{R} , sia g una funzione dispari e derivabile in \mathbb{R} . Dimostrare che la funzione f' è dispari e che la funzione g' è pari. Fornire un esempio per la funzione f ed un esempio per la funzione f, verificando quanto sopra.
- 3. Si consideri la funzione $f:(0,+\infty) \to \mathbb{R}$ così definita:

$$f(x) = \int_{1}^{x} \frac{\cos\left(\frac{\pi}{3}t\right)}{t} dt$$

Determinare l'equazione della retta tangente al grafico di f nel suo punto di ascissa 1.

- 4. Nello spazio tridimensionale, sia r la retta passante per i punti A(-2, 0, 1) e B(0, 2, 1). Determinare le coordinate di un punto appartenente alla retta r che sia equidistante rispetto ai punti C(5, 1, -2) e D(1, 3, 4).
- 5. Emma fa questo gioco: lancia un dado con facce numerate da 1 a 6; se esce il numero 3 guadagna 3 punti, altrimenti perde 1 punto. Il punteggio iniziale è 0.
 - Qual è la probabilità che, dopo 4 lanci, il suo punteggio sia ancora 0?
 - Qual è la probabilità che, in una sequenza di 6 lanci, il punteggio non scenda mai sotto lo 0?
- 6. Ai vertici di un quadrato *ABCD*, di lato 2 m, sono fissate quattro cariche elettriche. La carica in *A* è pari a 9 nC, la carica in *B* è pari a 2 nC, la carica in *C* è pari a 4 nC, la carica in *D* è pari a −3 nC. Supponendo che le cariche si trovino nel vuoto, determinare intensità, direzione e verso del campo elettrostatico generato dalle quattro cariche nel centro del quadrato.
- 7. Un protone, inizialmente in quiete, viene accelerato da una d.d.p. di 400 V ed entra, successivamente, in una regione che è sede di un campo magnetico uniforme e perpendicolare alla sua velocità.

	•	•	•	•	
	•	•	•	•	•
•	•	•	•	•	
•	•	•	•	•	•
•	<u> </u>	Q	•	•	
/	•	•	b	•	•
	•	•	0	•	
		•	9	•	•
		•	/ •	•	
		•	•	•	
			•		

La figura illustra un tratto semicircolare della traiettoria descritta dal protone (i quadretti hanno lato 1,00 m). Determinare l'intensità di \vec{B} .

Ministero dell'Istruzione, dell' Università e della Ricerca

8. Si vuole ottenere l'emissione di elettroni da lastre metalliche di materiali diversi su cui incide una radiazione di frequenza $7.80 \cdot 10^{14}$ Hz. Determinare, motivando la risposta, quale tra i materiali in elenco è l'unico adatto allo scopo.

Materiale	Lavoro di estrazione
Argento	4,8 eV
Cesio	1,8 eV
Platino	5,3 eV

Individuato il materiale da utilizzare, determinare la velocità massima che può avere un elettrone al momento dell'emissione.

COSTANTI FISICHE					
carica elementare	e	1,602 · 10 ⁻¹⁹ C			
costante di Planck	h	6,626 ⋅ 10 ⁻³⁴ J⋅s			
costante dielettrica nel vuoto	$arepsilon_0$	$8,854 \cdot 10^{-12} \text{ F/m}$			
massa dell'elettrone	m _e	$9,109 \cdot 10^{-31} \text{ kg}$			
massa del protone	m _p	$1,673 \cdot 10^{-27} \text{ kg}$			

Durata massima della prova: 6 ore.

È consentito l'uso di calcolatrici scientifiche e/o grafiche purché non siano dotate di capacità di calcolo simbolico (O.M. n. 350 Art. 18 comma 8).

È consentito l'uso del dizionario bilingue (italiano-lingua del paese di provenienza) per i candidati di madrelingua non italiana.